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Abstract
The traditional Tamm–Dancoff (TD) method is one of the standard procedures
for solving the Schrödinger equation of fermion many-body systems. However,
it meets a serious difficulty when an instability occurs in the symmetry-adapted
ground state of the independent particle approximation (IPA) and when the
stable IPA ground state becomes of broken symmetry. If one uses the stable but
broken symmetry IPA ground state as the starting approximation, TD wave
functions also become of broken symmetry. On the contrary, if we start
from a symmetry-adapted but unstable wave function, the convergence of the
TD expansion becomes bad. Thus, the requirements of symmetry and rapid
convergence are not in general compatible in the conventional TD expansion
of the systems with strong collective correlations. Along the same line as
Fukutome’s, we give a group-theoretical deduction of a U(n) dyadic TD
equation by using a matrix-valued generator coordinate.

PACS numbers: 21.60.Fw, 05.30.Fk

1. Introduction

One of the most challenging problems of nuclear physics and molecular physics is to give
a theory suitable for description of collective motions with large amplitudes in soft nuclei
and molecules with strong collective correlations. A conventional standard description of
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fermion many-body systems starts with the most basic approximation that is based on an
independent-particle picture, i.e., a self consistent field (SCF) for motion of the fermions.
The Hartree–Fock (HF) theory is typically one such approximation for ground states of the
fermion systems. Excited states are treated with the well-known random phase approximation
(RPA). As is well known, the HF theory is formulated by a variational method to optimize an
energy expectation value by a Slater determinant (S-det) and to obtain a variational equation
for orbitals in the S-det [1]. A set of particle–hole pair operators of the fermions with n

single-particle states is closed under a Lie multiplication and forms a basis of a Lie algebra
un [2]. The un Lie algebra of the fermion pair operators generates a Thouless transformation
[3], which induces a representation of the corresponding U(n) Lie group. The U(n) canonical
transformation transforms a S-det with m particles to another S-det. This means that any S-det is
obtained by a U(n) canonical transformation of a reference S-det. The Thouless transformation
provides an exact wave function of fermion state vector, which is the generalized coherent state
representation (CS rep) on U(n) Lie group of the fermion state [4].

Meanwhile, the traditional Tamm–Dancoff (TD) method has been one of the standard
procedures of solving the Schrödinger equation for such problems mentioned above. As we
have often experienced, the TD method meets with the following serious problems: they occur
when an independent particle ground state, of an independent particle approximation (IPA)
affiliated with some symmetry, becomes unstable and when the stable IPA ground state becomes
of broken symmetry. If the stable but broken symmetry IPA wave function is used as the
starting approximation, the symmetry is also broken by the approximate TD wave functions
and the identification of the wave functions with eigenstates of the Hamiltonian may become
ambiguous or even impossible. In contrast, if we start from a symmetry-adapted but unstable
wave function, the convergence of the TD expansion becomes truly bad and a cutoff of the
expansion may lead to a qualitatively incorrect result because the effect of the collective
correlation incorporated into the broken symmetry IPA wave function extends up to higher-
order terms of such an expansion. The requirements of both symmetry and rapid convergence
are not in general compatible with each other and can never be realized simultaneously, if we
try to describe fermion systems with strong collective correlations by the conventional TD
expansion method. Such correlations may be really anticipated to occur in highly deformed
and superconducting nuclei and also in superconducting molecular systems.

For providing a general microscopic means for unified description of collective excitations
in strongly correlated fermion systems and for eliminating the above-mentioned dilemma,
Fukutome has proposed the new TD method based on the SO(2n) and the SO(2n + 1) (the
special orthogonal groups of 2n and 2n + 1 dimensions) fundamental spinor representations
(n being the number of the single-particle states) [5, 6]. The Hartree–Bogoliubov (HB) wave
function is generated by the SO(2n) canonical transformation. The symmetry-projected TD
expansion method gives good wave functions for the ground and excited states up to any
higher-order approximation if we start from the HB wave function and use its non-Euclidean
property of transformation by a matrix-valued generator coordinate. However, a fermion
number nonconserving treatment is known to be unsatisfactory. One of the present authors
(SN) has developed the first-order approximation of the number-projected (NP) SO(2n) TD
equation to describe ground and excited states. This equation is expressed as a higher-order
differential equation with respect to geminal coset variables. As was done in [7], it can
be reduced to a simpler form by the Schur function of group characters, which has a close
connection with the soliton theory on the group manifold.

Along the same way as above, we give a group-theoretical deduction of a U(n) dyadic
TD equation by using a matrix-valued generator coordinate. In section 2, we introduce a
matrix-valued generator coordinate and derive a non-Euclidean transformation rule of the coset
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variables. In section 3, we make a U(n) dyadic TD expansion of a state in a particle–hole frame.
In section 4, we deduct a U(n) dyadic TD equation group theoretically and give an expression
for the Hamiltonian matrix element between two U(n) dyadic TD wave functions. In section 5,
we approximate the U(n) dyadic TD equation up to the first order. Finally, in section 6, we
give the summary and discussions on the generalized Brillouin theorem and the weak killer
condition [8]. In the appendices, we first recapitulate algebraic relations between the coset
coordinates and the Plücker coordinates, which play crucial roles in the SCF and the soliton
theories. We also give differential formulae needed for variational calculations and explicit
forms of the Schur functions.

2. Generator coordinate and non-Euclidean transformation

We consider a finite many-fermion system with n single-particle states. Let cα and c†
α

(α = 1, . . . , n) be the annihilation and creation operators of the fermion. Owing to the
anti-commutation relations

{cα, c†
β} = δαβ, {cα, cβ} = {c†

α, c†
β} = 0, (2.1)

fermion pair operators eαβ ≡ c†
αcβ satisfy a Lie commutation relation

[eαβ, eγδ] = δβγeαδ − δαδeγβ, (2.2)

and span a Lie algebra un. The brackets {·, ·} and [·, ·] denote the anti-commutator and the
commutator, respectively. A canonical transformation U(g) = eγαβc†

αcβ (γ† = −γ), which is
specified by a U(n) matrix g (=eγ), generates a transformation such that

U(g)c†
αU

−1(g) = c
†
βgβα, U(g)cαU

−1(g) = cβg
∗
βα,

U−1(g) = U(g−1) = U(g†), U(gg′) = U(g)U(g′), g†g = gg† = 1n,
(2.3)

where 1n is an n-dimensional unit matrix. We use the dummy index convention to sum
up repeated indices unless there is scope for misunderstanding. Symbols †, ∗ and T mean
hermitian conjugation, complex conjugation and transposition, respectively. Let |0〉 be a free
vacuum and |φm〉 be an m particle S-det

cα|0〉 = 0, (α = 1, . . . , n), |φm〉 = c†
m · · · c†

1|0〉,

U(g)|φm〉 = (c†g)m · · · (c†g)1|0〉 d= |g〉, U(g)|0〉 = |0〉,
(2.4)

where c† means an n-dimensional row vector c† = (c
†
1, . . . , c†

n). Equation (2.4) shows that m

particle S-det is an exterior product of m single-particle states and that U(g) transforms |φm〉
to another S-det (Thouless transformation) [3] under (2.3). Such states are called ‘simple’
states. The set of all simple states of unit modulus together with the equivalence relation,
identifying distinct states only in phases with the same state, constitutes a manifold known as
a Grassmannian Grm. The Grm is an orbit of the group given through (2.4). Any simple state
|φm〉 ∈ Grm defines a decomposition of single-particle Hilbert space into sub-Hilbert spaces
of occupied and unoccupied states [9]. Thus, the Grm corresponds to a coset space

Grm ∼ U(n)/(U(m) × U(n − m)). (2.5)
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Following Fukutome [10], let us introduce triangular matrix functions S(ζ), C(ζ) and C̃(ζ)

defined as

S(ζ) = (Sia(ζ)) =
∞∑

k=0

(−1)k
1

(2k + 1)!
ζ(ζ†ζ)k,

C(ζ) = (Cab(ζ)) = 1m +
∞∑

k=1

(−1)k
1

(2k)!
(ζ†ζ)k = C†(ζ),

C̃(ζ) = (C̃ij(ζ)) = 1n−m +
∞∑

k=1

(−1)k
1

(2k)!
(ζζ†)k = C̃†(ζ),

(2.6)

which have the properties analogous to the usual triangular functions

C2(ζ) + S†(ζ)S(ζ) = 1m, C̃2(ζ) + S(ζ)S†(ζ) = 1n−m, S(ζ)C(ζ) = C̃(ζ)S(ζ).

(2.7)

The indices i and a denote unoccupied states (m + 1, . . . , n) and occupied states (1, . . . , m),
respectively. The matrix p is defined as p = (pia) = S(ζ)C−1(ζ) = C̃−1(ζ)S(ζ).
Using equations (2.6) and (2.7), we have relations det C = [ det(1 + p†p)]−

1
2 and det C̃ =

[det(1 + pp†)]−
1
2 , where det C and det C̃ are determinants of matrices C and C̃, respectively.

The matrix g in (2.3) is decomposed as g = gζgw using the matrices given by

gζ = eγ ′ =
[
C(ζ) −S(ζ)†

S(ζ) C̄(ζ)

]
, γ ′ =

[
0 −ζ†

ζ 0

]
,

gw = eγ ′′ =
[
w 0

0 w̄

]
, γ ′′ =

[
η 0

0 η̄

]
, η† = −η, η̄† = −η̄,

(2.8)

where ζ is an (n − m) × m matrix (ζia) and η and η̄ are m × m and (n − m) × (n − m)

anti-hermitian matrices (ηab) and (η̄ij), respectively.
Let us start with a state |f 〉, an exact representaion on the U(n) group

|f 〉 = nCm

∫
U(g′)|φm〉〈φm|U†(g′)|f 〉dg′

= nCm

∫
|g′〉�0f (g′)dg′

(
nCm = n!

m!(n − m)!

)
, (2.9)

where dg′ is an invariant group integration over the U(n) group. Using the invariance of the
group measure of the transformation of the variable g by any group element, from (2.9) we
have

U(g)|f 〉 = nCm

∫
|g′〉�0f (g†g′)dg′, (2.10)

which means that the canonical transformation U(g) to the state |f 〉 corresponds to a left
coordinate tranformation by g† of the matrix-valued generator coordinate g′. Instead of g′, let
us introduce the matrix-valued generator coordinate ◦

g in the g particle–hole frame by ◦
g = g†g′.

Then, conversely, the g′ is represented as

g′ =
[
C′w′ −S′†w̄′

S′w′ C̃′w̄′

]
= g

◦
g =

[
Cw −S†w̄

Sw C̃w̄

] 
 ◦

C
◦
w −

◦
S†

◦
w̄

◦
S

◦
w

◦
C̃

◦
w̄




=

Cw

◦
C

◦
w − S†w̄

◦
S

◦
w −Cw

◦
S†

◦
w̄ − S†w̄

◦
C̃

◦
w̄

Sw
◦
C

◦
w + C̃w̄

◦
S

◦
w −Sw

◦
S†

◦
w̄ + C̃w̄

◦
C̃

◦
w̄


 . (2.11)
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From (2.11) and the definition of a coset variable ◦
p ≡ ◦

S
◦
C −1 in the coordinate ◦

g, we obtain
the relations

C′w′ = Cw
◦
C

◦
w −S†w̄

◦
S

◦
w = [Cw − S†w̄

◦
S

◦
w(

◦
C

◦
w)−1]

◦
C

◦
w

= [Cw − S†w̄
◦
p]

◦
C

◦
w = Cw[1 − (Cw)−1S†w̄

◦
p]

◦
C

◦
w,

S′w′ = Sw
◦
C

◦
w + C̃w̄

◦
S

◦
w = [Sw + C̃w̄

◦
S

◦
w(

◦
C

◦
w)−1]

◦
C

◦
w = [Sw + C̃w̄

◦
p]

◦
C

◦
w .

(2.12)

On the other hand, from g†g = 1, i.e. w̄†C̃
†
C̃w̄ + w̄†SS†w̄ = 1, we also have

C̃w̄ + (w̄†C̃
†
)−1w̄†SS†w̄ = C̃w̄ + pS†w̄ = (w̄†C̃

†
)−1. (2.13)

We further define a coset variable p′ ≡ S′C′−1 in the g′ frame. A U(n) wave function generated
by a canonical transformation to a g′ particle–hole frame is regarded as a function of the
generator coordinate ◦

g : |g′〉 = U(g
◦
g)|g◦

g〉. With the aid of (2.12) and (2.13), the coset variable
p′ is written as

p′ = S′w′(C′w′)−1 = [Sw + C̃w̄
◦
p][1 − (Cw)−1S†w̄

◦
p]−1(Cw)−1

= [Sw{1 − (Cw)−1S†w̄
◦
p} + {pS†w̄ + C̃w̄} ◦

p][1 − (Cw)−1S†w̄
◦
p]−1(Cw)−1

= p + (w̄†C̃
†
)−1 ◦

p [1 − (Cw)−1S†w̄
◦
p]−1(Cw)−1. (2.14)

Let us introduce following matrices r, q and e:

r ≡ (Cw)−1S†w̄ = w−1p†w̄,

q ≡ (w̄†C̃
†
)−1 ◦

p(Cw)−1 = (w̄†C̃)−1 ◦
p(Cw)−1,

e ≡ −(Cw)∗r∗(w̄†C̃
†
)∗ = −STC̃

T = −pT(1 + p∗pT)−1.

(2.15)

Then, the p′ is rewritten as

p′ = p + q[1 − (Cw)r
◦
p(Cw)−1]−1 = p + q[1 − (Cw)r(w̄†C̃

†
)q]−1 = p + q(1 + e∗q)−1,

(2.16)

whose transformation rule causes the non-Euclidean properties of the coset variables because
the coset variables (the geminals) are quantities defined on the non-commutative U(n) group,
which belong to the Grassmann manifold U(n)/(U(m) × U(n − m)) [11].

Finally, we define the overlap integral of U(n) wave functions

S(g, g′) = �∗
00(g

†g′) = 〈φm|U†(g)U(g′)|φm〉. (2.17)

Multiplying equation (2.9) by 〈φm|U†(g), we have

�0f (g) = nCm

∫
〈φm|U†(g)U(g′)|φm〉φ0f (g′)dg′ = nCm

∫
S(g, g′)�0f (g′)dg′, (2.18)

in which it is easily verified that the overlap integral S(g, g′) satisfies

S(g, g′) = nCm

∫
S(g, g′′)S(g′′, g′)dg′′. (2.19)

This property shows that the nCmS(g, g′) is just the projection operator to the U(n) S-det.
Putting ◦

g= g†g′ in (2.17) and using the same type of representaion as that of (2.11), we have

�∗
00(g

†g′) = �∗
00(

◦
g) = det(

◦
C

◦
w), (2.20)

◦
g = g†g′ =

[
w†C† w†S†

−w̄†S w̄†C̃†

] [
C′w′ −S′†w̄′

S′w′ C̃′w̄′

]

=
[

w†(C†C′ + S†S′)w′ −w†(C†S′† − S†C̃′)w̄′

−w̄†(SC′ − C̃†S′)w′ w̄†(C̃†C̃′ + SS′†)w̄′

]
. (2.21)
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Then, an explicit expression for the overlap integral is obtained as

S(g, g′) = det(C′′w′′) = det{C†(1 + C†−1S†S′C′−1)C′} det(w†) det(w′)

= D(p′Tp∗)�00(g)�∗
00(g

′), (2.22)

where the function D(p′Tp∗), expressing its other form in appendix D, is defined by

D(p′Tp∗) ≡ det(1 + p′Tp∗) = det(1 + p†p′). (2.23)

3. TD expansion of a state in a particle–hole frame

Taking the coordinate g′ instead of the generator coordinate ◦
g in (2.20), we have

�00(g
′) = 〈φm|U†(g′)|φm〉 = det(C′w′), g′ = g

◦
g . (3.1)

Through (2.12) and (2.15), computation of a determinant of C′w′ is carried out as

det(C′w′) = det(Cw) det(
◦
C

◦
w) det[1 − (Cw)−1S†C̃q(Cw)]

= det(Cw) det(
◦
C

◦
w) det[(Cw)−1(1 − S†C̃q)(Cw)]

= det(Cw) det(
◦
C

◦
w) det(1 + eq∗). (3.2)

On the other hand, by using equations (A.1) and (2.9), the U(N) spinor function �0f (g′) is
shown to be in the following form:

〈φm|U†(g′)|f 〉 = φ0f (g′) = [�∗
00(g

′)ep′
iac

†
i ca |φm〉]†|f 〉 = Xf (p′∗)�00(g

′)

= Xf {p∗ + q∗(1 + eq∗)−1}D(eq∗)�00(g)�00(
◦
g), (3.3)

where the functions Xf (p′∗) and D(eq∗) are defined as

Xf (p′∗) ≡ 〈φm|ep′∗
iac

†
aci |f 〉, D(eq∗) ≡ det(1 + eq∗). (3.4)

We also have used the non-Euclidean transformation (2.16) and the above equations (3.1) and
(3.2). From (3.3) we have

�0f (g′) = Xf (p∗ + K∗)D(eq∗)�00(g)φ00(
◦
g), K∗ ≡ q∗(1 + eq∗)−1. (3.5)

Applying the differential formulae of D(ep∗) with respect to eai in appendix E

∂ρD(eq∗)
∂ea1i1∂ea2i2 · · · ∂eaρiρ

= A(K∗
i1a1

K∗
i2a2

· · · K∗
iρaρ

)D(eq∗) (ρ = 1, . . . , min(m, n − m)) (3.6)

to the Tayler expansion made below and using the anti-symmetric property of the differentials
of Xf (p∗)

∂2Xf (p∗)
∂p∗

jb∂p
∗
ia

= −∂2Xf (p∗)
∂p∗

ib∂p
∗
ja

, . . . , (3.7)

we can make a Tayler expansion of Xf (p∗ +K∗) in (3.5) with respect to K∗. A matrix element
p∗

ia appears only once in Xf (p∗), because the Xf (p∗) is an anti-symmetric function of p∗,
which is proved with the use of equations (B.21) and (B.22). Then, the Tayler series leads to

Xf (p∗ + K∗)D(eq∗) = Xf (p∗)D(eq∗) +
M∑

ρ=1

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

∂ρXf (p∗)
∂p∗

i1a1
∂p∗

i2a2
· · · ∂p∗

iρaρ

× A(K∗
i1a1

K∗
i2a2

· · · K∗
iρaρ

)D(eq∗). (3.8)
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Furthermore, with the help of the expression for the D(p′Tp∗) in appendix D, the explicit
expression for the D(eq∗) is calculated to be

D(eq∗) =
M∑

ρ=0

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

A(ea1i1 · · · eaρiρ )A(q∗
i1a1

· · · q∗
iρaρ

). (3.9)

Let Dρ = 1 for ρ = 0. Substituting (3.9) into (3.8), we have

�0f (g′) = Xf (p∗ + K∗)D(eq∗)�00(g)�00(
◦
g)

= �00(g)

M∑
ρ=0

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

A(q∗
i1a1

· · · q∗
iρaρ

)Dρ
a1i1···aρiρ

Xf (p∗)�00(
◦
g), (3.10)

where the ρth-order covariant differential operator Dρ
a1i1···aρiρ

is defined as

Dρ
a1i1···aρiρ

≡ A(ea1i1 · · · eaρiρ ) + A
(

ea2i2 · · · eaρiρ

∂

∂p
†
a1i1

)
+ · · · + A

(
∂

∂p
†
a1i1

· · · ∂

∂p
†
aρiρ

)
.

(3.11)

From the second equation of (2.15), we have an explicit form of q∗ as q∗
ia = {(C̃w̄)T−1}ij ◦

p
∗
jb

×{(Cw)∗−1}ba, in which we have used again the dummy index convention to sum up
repeated indices j and b. Substituting this into (3.10) and defining the differential operator
�

ρ

b1j1···bρjρ
(�ρ = 1 for ρ = 0) as

�
ρ

b1j1···bρjρ
≡

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

{(Cw)∗−1}b1a1{(C̃w̄)−1}j1i1 · · · {(Cw)∗−1}bρaρ

× {(C̃w̄)−1}jρiρD
ρ
a1i1···aρiρ

, (3.12)

we finally get

�0f (g′) = φ0f (g
◦
g) = φ00(g)

M∑
ρ=0

A(
◦
p ∗

j1b1
· · · ◦

p ∗
jρbρ

)�
ρ

b1j1···bρjρ
Xf (p∗)�00(

◦
g), (3.13)

which is the dyadic TD expansion of a state function �0f (g′) in the g particle–hole frame.
Fermion many-body systems always have a symmetry group s which is a subgroup of the

U(n) group. An eigenstate of a Hamiltonian H belongs to an irreducible representation of the
symmetry group. We denote the irreducible representation by I, the quantum number to specify
its orthogonal bases by M and the other quantum numbers by ω. The symmetry group s is an
element of the U(n) group and there is a U(n) canonical transformation U(s) corresponding to
s. Following [2], we give a generator coordinate representation of a symmetry adapted state
vector |IMω〉 in terms of the projected U(n) wave function. The state vector |f 〉 = |IMω〉 is
transformed by U(s) as

U(s)|IMω〉 =
∑
K

|IKω〉DI
KM(s), s =

[
sh 0
0 sp

]
, s†s = ss† = 1n, (3.14)

where DI
KM(s)’s are the so-called D functions, which are the matrix elements of the

representation matrix of the irreducible representation I of the group s. From (2.9), we have

U(s)|IMω〉 = nCm

∫
U(sg)|φm〉〈φm|U†(g)|IMω〉dg. (3.15)
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Multiplying equation (3.15) by DI∗
KM(s), integrating over the group s, and using (3.14) and the

orthogonality relation for the D functions∫
DI∗

KM(s)DI ′
K′M ′(s)ds = [d(I)]−1δII ′δKK′δMM ′ , (3.16)

we obtain a generator coordinate representation of the symmetry adapted state vector

|IKω〉 = d(I )nCm

∫
|�I

KM(g)〉〈φm|U†(g)|IMω〉dg, (3.17)

where d(I) is the dimension of the representation I and the volume of the symmetry group s.
The state vector |�I

KM(g)〉 is defined as

|�I
KM(g)〉 ≡

∫
DI∗

KM(s)U(sg)|φm〉ds,

〈�I
KM(g)|�I ′

K′M ′(g′)〉 = [d(I)]−1δII ′δKK′SI
MM ′(g, g′),

SI
MM ′(g, g′) ≡

∫
DI∗

MM ′(s′)S(g, s′g′)ds′,

(3.18)

which is just the Peierls–Yoccoz symmetry projected HF wave function [2, 5, 10, 12].

4. U(n) dyadic TD equation

Multiplying equation (2.9) by 〈φm|U†(g)X, we have

〈φm|U†(g)X|f 〉 = nCm

∫
X(g, g′)�00(g

′)dg′,

X(g, g′) ≡ 〈φm|U†(g)XU(g′)|φm〉.
(4.1)

On the other hand, from the definition (4.1) and equation (A.1), the integral operator X(g, g′)
becomes

X(g, g′) = [φ∗
00(g)epiac

†
i ca |φm]†X�∗

00(g
′)ep′

jbc
†
j cb |φm〉

= 〈φm|ep∗
iac

†
aciXep′

jbc
†
j cb |φm〉�00(g)�∗

00(g
′), (4.2)

from which the integral operator is expressed with p∗ and p′ as

X(g, g′) = X(p∗, p′)�00(g)�∗
00(g

′), X(p∗, p′) ≡ 〈φm|ep∗
iac

†
aciXep′

jbc
†
j cb |φm〉. (4.3)

Applying equation (3.13) to equation (4.3), then, the dyadic TD expansion of an operator X in
the two particle–hole frames ĝ and ǧ

X(ĝ
◦
ĝ, ǧ

◦
ǧ) = 〈φm|U†(ĝ

◦
ĝ)XU(ǧ

◦
ǧ)|φm〉, (4.4)

can be obtained in the following way: putting ĝ
′ = ĝ

◦
ĝ, the integral operator X(g, g′) is

written as

X(ĝ
◦
ĝ, ǧ

◦
ǧ) = 〈φm|U†(ĝ

′
)XU(ǧ

′
)|φm〉 = [�∗

00(ĝ
′
)ep̂′

iac
†
i ca |φm〉]†X�∗

00(ǧ
′
)ep̌′

jbc
†
j cb |φm〉

= 〈φm|ep̂′∗
iac

†
aciXep̌′

jbc
†
j cb |φm〉�00(ĝ

′
)�∗

00(ǧ
′
)

= XX(p̂′∗, p̌′)�00(ĝ
′
)�∗

00(ǧ
′
)

= XX(p̂∗ + K̂∗, p̌ + Ǩ)D(êq̂∗)D(ě∗q̌)�00(ĝ)�00(
◦
ĝ)�∗

00(ǧ)�∗
00(

◦
ǧ), (4.5)

where the XX(p̂′∗, p̌′) is defined as

XX(p̂′∗, p̌′) ≡ 〈φm|ep̂′∗
iac

†
aciXep̌′

jbc
†
j cb |φm〉 = X(p̂′∗, p̌′), (4.6)
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and where we have used the relation p̂
′ = p̂ + q̂(1 + ê∗q̂)−1 = p̂ + K̂, derived from the

relation (2.16) and the definition in (3.5). The function XX(p̂′∗, p̌′) satisfies the anti-symmetric
properties of the differentials with respects to p̂∗ and p̌ each of which is quite similar to that
in (3.7). According to equation (3.8), the XX can also be cast to

XX(p̂∗ + K̂∗, p̌ + Ǩ) = XX(p̂∗, p̌ + Ǩ) +
M∑

ρ=1

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

∂ρXX(p̂∗, p̌ + Ǩ)

∂p̂∗
i1a1

· · · ∂p̂∗
iρaρ

× A(K̂∗
i1a1 · · · K̂∗

iρaρ
). (4.7)

From the above equation, we have

XX(p̂∗ + K̂∗, p̌ + Ǩ)D(êq̂∗) =
M∑

ρ=0

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

A(q̂∗
i1a1

· · · q̂∗
iρaρ

)D̂ρ
a1i1···aρiρ

X(p̂∗, p̌ + Ǩ).

(4.8)

Similarly, we get

XX(p̂∗, p̌ + Ǩ)D(ě∗q̌) =
M∑

ρ=0

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

A(q̌i1a1 · · · q̌iρaρ
)Ďρ∗

a1i1···aρiρ
X(p̂∗, p̌). (4.9)

Combining (4.8) with (4.9), we obtain

X(ĝ
◦
ĝ, ǧ

◦
ǧ) =

M∑
ρ′=0

∑
1�a′

1<···<a′
ρ′ �m;

m+1�i′1<···<i′
ρ′ �n

A(q̂∗
i′1a

′
1
· · · q̂∗

i′
ρ′ a′

ρ′ )D̂
ρ′

a′
1i

′
1···a′

ρ′ i′ρ′

M∑
ρ=0

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

× A(q̌i1a1 · · · q̌iρaρ
)Ďρ∗

a1i1···aρiρ
X(p̂∗, p̌)�00(ĝ)�00(

◦
ĝ)�∗

00(ǧ)�∗
00(

◦
ǧ). (4.10)

Introducing again the differential operator �
ρ

b1j1···bρjρ
(�ρ = 1 for ρ = 0) defined in (3.12),

we can get the U(n) dyadic TD expansion of any operator X in the two particle–hole frames
ĝ and ǧ

X(ĝ
◦
ĝ, ǧ

◦
ǧ) = �00(ĝ)�∗

00(ǧ)

M∑
ρ′=0

∑
1�b′

1<···<b′
ρ′ �m;

m+1�j′
1<···<j′

ρ′ �n

A(
◦

p̂∗
j′

1b
′
1
· · ·

◦
p̂∗

j′
ρ′ b′

ρ′ )�̂
ρ′

b′
1j

′
1···b′

ρ′ j′
ρ′

×
M∑

ρ=0

∑
1�b1<···<bρ�m;

m+1�j1<···<jρ�n

A(
◦
p̌j1b1

· · ·
◦
p̌jρbρ

)�̌
ρ∗
b1j1···bρjρ

X(p̂∗, p̌)�00(
◦
ĝ)�∗

00(
◦
ǧ).

(4.11)

Let |�ρ

b1j1···bρjρ
(ǧ)〉 = d

†
b1

(ǧ)d
†
j1
(ǧ) · · · d†

bρ
(ǧ)d

†
jρ

(ǧ)U(ǧ)|φm〉 be the TD basis with ρ particle–

hole pairs in a physical fermion space and d
†
j (ǧ) ≡ U(ǧ)c

†
jU

−1(ǧ) and d
†
b(ǧ) ≡ U(ǧ)cbU

−1(ǧ)

be the creation operators of a ǧ particle and hole frame. The dyadic TD matrix elements of X

are therefore given as

〈�ρ′

b′
1j

′
1···b′

ρ′ j′
ρ′
(ĝ)|X|�ρ

b1j1···bρjρ
(ǧ)〉 = �00(ĝ)�∗

00(ǧ)�̂
ρ′

b′
1j

′
1···b′

ρ′ j′
ρ′
�̌

ρ∗
b1j1···bρjρ

X(p̂
′∗, p̌). (4.12)
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We expand the state |IKω〉 in terms of the states |�ρ

b1j1···bρjρ
(ǧ)〉 as

|IKω〉 =
∑

ρ

∑
(b1j1)<···<(bρjρ)

I
Kω,b1j1···bρjρ

|�ρ

b1j1···bρjρ
(ǧ)〉, (4.13)

which is just the dyadic TD expansion of the eigenstate of the Hamiltonian H . The summation
convention over the indices in (4.13), but simply abbreviated, means the one appeared in (4.11).
After making the variation of the energy EI

ω = 〈IKω|H |IKω〉/〈IKω|IKω〉, we apply equation
(4.12) to the operator HI

KK −EI
ωSI

KK and put ĝ = ǧ = g. Then, we finally get the U(n) dyadic
TD equation to determine the expansion coefficients I

Kω,b1j1···bρjρ
:∑

ρ′

∑
(b1j1)<···<(bρ′ jρ′ )

�ρ
a1i1···aρiρ δ

ρ′∗
b1j1···bρ′ jlρ′ {HI

KK(p∗, p) − EI
ωSI

KK(p∗, p)}I
Kω,b1j1···bρ′ jρ′ = 0,

(4.14)

where the quantities HI
KK(p∗, p) and SI

KK(p∗, p) are given through the following relations:

HI
KK(g, g) = 〈φm|U†(g)H |�I

KK(g)〉 =
∫

DI∗
KK(s)H(g, sg)ds = HI

KK(p∗, p)|�00(g)|2,

SI
KK(g, g) = 〈φm|U†(g)|�I

KK(g)〉 =
∫

DI∗
KK(s)S(g, sg)ds = SI

KK(p∗, p)|�00(g)|2.
(4.15)

Let us introduce the modified dyadic TD coefficients

CI
Kω,b1j1···bρjρ

≡
∑

(a1i1)<···<(aρiρ)

{(Cw)∗−1}b1a1{(C̃w̄)−1}j1i1 · · · {(Cw)∗−1}bρaρ

× {(C̃w̄)−1}jρiρ
I
Kω,a1i1···aρiρ

. (4.16)

Then, equation (4.14) is converted to the projected U(n) dyadic TD equation,∑
ρ′

∑
(b1j1)<···<(bρ′ jρ′ )

Dρ
a1i1···aρiρDρ′∗

b1j1···bρ′ jlρ′ {HI
KK(p∗, p) − EI

ωSI
KK(p∗, p)}CI

Kω,b1j1···bρ′ jρ′ = 0.

(4.17)

The modified coefficients CI
Kω,b1j1···bρ′ jρ′ have to satisfy the normalization condition

∑
ρ,ρ′

∑
(a1i1)<···<(aρiρ),(b1j1)<···<(bρ′ jρ′ )

Dρ
a1i1···aρiρDρ′∗

b1j1···bρ′ jlρ′ S
I
KK(p∗, p)CI∗

Kω,a1i1···aρiρ
CI

Kω,b1j1···bρ′ jρ′

= d(I) · |�00(g)|−2, (4.18)

which is obtained from (3.17) and 〈IKω|IKω〉 = 1.

5. First-order approximation to projected U(n) TD equation

We make an approximation to the projected U(n) TD expansion of the state |IKω〉, (4.13)
up to the first order and determine simultaneously both the expansion coefficients and the
coset variable p in equation (4.17). With this approximation, it is possible to get easily
the best p in determining them variationally, by using the same state vector. To look for the
best p, both the projected U(n) TD equation (4.17) and the equation for p must be treated as
a set of equations, which should be solved self-consistently. However, in order to make our
calculations manageable, we decouple the equation for p from the projected U(n) TD equation.
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We adopt the following first-order approximation of the projected U(n) TD expansion of the
state |IKω〉:

|IKω〉ap = |IKω〉(0) + |IKω〉(1) =
∑
M

{
CI

Mω|�I
MK(p)〉 +

∑
ai

CI
Mω,aiD1∗

ai |�I
MK(p)〉

}
�∗

00(g),

(5.1)

which gives the first-order projected U(n) TD basis elements within the approximation
ignoring two or more particle–hole pair excitations. We have used the relation |�I

MK(g)〉 =
|�I

MK(p)〉�∗
00(g). The norm of the |IKω〉ap is given by

NIKω
approx(g, g) = NIKω

approx(p
∗, p) · |�∗

00(g)|2,

NIKω
approx(p

∗, p) = [d(I)]−1 ·
∑
M

{
CI∗

MωCI
Mω +

∑
ai

(CI∗
MωCI

Mω,aiD1∗
ai + CI∗

Mω,aiCI
MωD1

ai) (5.2)

+
∑
ai

∑
bj

CI∗
Mω,aiCI

Mω,bjD1
aiD1∗

bj

}
· SI

KK(p∗, p).

Let WI
Kω be an approximate value of the energy EI

ω in the approximate eigenstate |IKω〉ap.
Along the same line as the above, the projected U(n) TD equation (4.17) is also approximated
up to first order as follows:

HI
KK(p∗, p)CI

Kω +
∑
bj

D1∗
bj HI

KK(p∗, p)CI
Kω,bj

−WI
Kω

{
SI

KK(p∗, p)CI
Kω +

∑
bj

D1∗
bj SI

KK(p∗, p)CI
Kω,bj

}
= 0,

D1
aiH

I
KK(p∗, p)CI

Kω +
∑
bj

D1
aiD1∗

bj HI
KK(p∗, p)CI

Kω,bj

−WI
Kω

{
D1

aiS
I
KK(p∗, p)CI

Kω +
∑
bj

D1
aiD1∗

bj SI
KK(p∗, p)CI

Kω,bj

}
= 0,

(5.3)

a set of which is an eigenvalue equation containing an unknown coset variable p. We can
determine it by the variational equation for p, δpWI

Kω = δp{〈IKω|H |IKω〉ap/〈IKω|IKω〉ap} =
0, from which the equation for p is given as{

∂HI
KK(p∗, p)

∂p
†
ai

− WI
Kω

∂SI
KK(p∗, p)

∂p
†
ai

}
CI∗

KωCI
Kω

+

 ∂

∂p
†
ai

∑
bj

D1∗
bj HI

KK(p∗, p) − WI
Kω

∂

∂p
†
ai

∑
bj

D1∗
bj SI

KK(p∗, p)


 CI∗

KωCI
Kω,bj

+

 ∂

∂p
†
ai

∑
bj

D1
bjH

I
KK(p∗, p) − WI

Kω

∂

∂p
†
ai

∑
bj

D1
bjS

I
KK(p∗, p)


 CI∗

Kω,bjCI
Kω

+

 ∂

∂p
†
ai

∑
bj

∑
ck

D1
bjD1∗

ck HI
KK(p∗, p) − WI

Kω

∂

∂p
†
ai

∑
bj

∑
ck

D1
bjD1∗

ck SI
KK(p∗, p)




× CI∗
Kω,bjCI

Kω,ck = 0, (5.4)
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to which substitution of the lowest energy solution of the eigenvalue equation (5.3) determines
the p†. Equation (5.4) is also derived by differentiations of (5.3) with respect to p

†
ai. Then,

the eigenvalue equation (5.3) should be solved keeping the solved eigenvalue to be compatible
with the p† determined variationally.

To get a self-consistent optimal solution of the set of equations (5.3) and (5.4), it may be
powerful to adopt the optimization algorithm consisting of some iteration steps [5, 7]. Under
the change of the particle–hole frame, g → g

◦
g and p → p′, we calculate the differential

of WI
Kω(p′) up to the same order as the one in (5.4). Let us start to solve the eigenvalue

equation (5.3) with a trial p†. Substitute its lowest energy solution and the trial p† into
the approximate differential formula for WI

Kω(p′). Our desired q† is determined so as to
satisfy ∂WI

Kω(p′)/∂q†
ai = 0, though we omit its derivative formula which is very complicated.

Assuming the q† to be small and using the dyadic TD expansion of any operator X (4.10), we
can compute the derivative formula up to second order in q and q∗. Then, the iteration steps
proceed a way quite parallel to the one taken in [5, 7]. In each step, we can calculate the p′†

in the left-hand side of equation (2.16) from p† and q† and use it as the new p† of the next
iteration cycle.

6. Summary and discussions

The U(n) TD method discards the IPA as the starting approximation but its first-order
approximation describes stationary states of Bose condensed particle–hole pairs. The pairs are
in a coherent motion affiliated with a certain symmetry of a system since the state of particle–
hole pairs is changing under an operation of the symmetry. The Peierls–Yoccoz projection
selects out the stationary states of the coherent motion because the representation matrices
of the symmetry group s are the eigenstates of the motion. To go beyond the zeroth-order
approximation, we have developed the first-order approximation of the symmetry-projected
U(n) TD equation keeping the non-Euclidean transformation rule (2.16). We can reduce the
first-order equation to simpler forms, though we omit the details here. A manipulation is
based on both the character theory of group and the recursion relation associated with the
Schur function, i.e. the character polynomials corresponding to the completely anti-symmetric
Young diagram. Our theory has been constructed by a group-theoretical deduction and hence
has a universal applicability. Due to its physical aspects, it is expected to work better in
nuclear and molecular systems with strong collective correlations, where ground states are
well approximated by Bose condensates. It provides a general microscopic tool for a unified
understanding of collective excitations in such fermion systems.

The first-order approximation (5.1) is expected to work better than the IPA to describe
ground and excited states of the fermion systems with strong collective correlations. The
reason for the expectation is mainly due to the following points: (i) easier diagonalization
of the eigenvalue equation and faster convergence may be achieved simultaneously compared
with the diagonalization and convergence of the original eigenvalue equation, because we
make no use of an unstable IPA wave function from the outset; (ii) through all the iteration
steps for the optimization, we adopt the first-order covariant differential operator instead of
the usual first derivative, to evaluate derivatives of the Hamiltonian matrix element and the
overlap integral in the particle–hole pair excitation states. The covarint derivative yields
important different results compared with the use of the usual derivative, e.g. the trivially
identical equation D1∗

ai S(p∗, p) = 0. If the condition D1∗
ai S

I
KK(p∗, p) = 0 is satisfied for

any particle–hole pair ia, the generalized Brillouin theorem D1∗
ai H

I
KK(p∗, p) = 0 holds

exactly. An action of the D1∗
ai brings no essential difference in the results obtained by the
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usual derivatives [6]. In the symmetry-projected U(n) case, the condition is hardly satisfied
and the generalized Brillouin theorem is not established exactly. To satisfy the condition,
another one called the killer condition must be fulfilled. See the details in [6, 8]. To
see this, diagonalize ζ as ζia = ∑M

A=1 ṽiAζAv∗
aA, where ṽ = (ṽiA) and v = (vaA) are

(n − m) × M and m × M matrices. Then, we have pia = ∑M
A=1 ṽiApAv∗

aA(pA = tan ζA)

and eai = − ∑M
A=1 v∗

aApA(1 + p2
A)−1ṽiA [2]. In (3.14), for simplicity putting sh = 1m and

s̃ = sp, from these relations and
∑n

i=m+1 ṽ∗
iA(s̃ṽ)iB = zA(s̃)δAB, we get the killer condition

M∑
A=1

v∗
aA

pA

1 + p2
A

∫
DI∗

KK(s̃)

[
ṽiA − 1 + p2

A

1 + zA(s̃)p2
A

(s̃ṽ)iA

]
det{1 + p†(s̃p)}ds̃ = 0. (6.1)

Rowe et al have decoupled the variational equation for ground state and the IPA equation for
excited states from each other [13]. On the other hand, due to the above reason, we have matrix
elements between the zeroth-order component of the U(n) TD wave function and the first-order
one which includes contributions from all pairwise excitations. Then, our eigenvalue equation
(5.3) becomes suitable for the description of such a strong coupling between the ground state
and the excited state of soft nuclei with strong collective correlations. Nevertheless, suppose
a slightly loose condition called the weak killer condition∫

DI∗
KK(s̃)

[
1 − zA(s̃)(1 + p2

A)

1 + zA(s̃)p2
A

]
det{1 + p†(s̃p)}ds̃ = 0, (6.2)

which is derived by multiplying (6.1) with ṽ∗
iA for any A and summing up over i and whose

original form has appeared first in [7]. Employing this instead of the original strong killer
condition, we are able to ensure the generalized Brillouin theorem D1∗

ai H
I
KK(p∗, p) = 0, which

in turn resolves the eigenvalue equation (5.3) into two secular equations and determines the
ground state and the excited states, separately. Furthermore, using the mathematical technique
in appendix D and adopting the same method as the one in [7], this eigenvalue equation is
expressed in terms of the Schur function. Then, the handling of the eigenvalue equation
(5.3) becomes very easy. It is solved self-consistently keeping the non-Euclidean property of
transformation. Adding these, we have another advantage that the U(n) TD approximation
can be extended up to any higher order if necessary. Throughout this paper emphasis has been
put on explaining the rather basic idea which is developed from the previous attempt [7]. The
present discussions have been made in the general form as much as possible.

In a forthcoming paper, we shall illustrate a practical usefulness of the first-order U(n)

TD approximation. This approximation is tractable by calculation of equations (5.3) and
(5.4) for the simplest schematic models of nuclei, e.g. the famous two-level SU(2) Lipkin–
Meshkov–Glick (LMG) Hamiltonian [14, 15] and the three-level SU(3) LMG Hamiltonian
[16]; both of them have non-degenerate single-particle energies. The SU(3) model poses a
non-trivial problem for finding the solution but still simple enough to allow the calculation of
equations (5.3) and (5.4) and comparisons with the solution by the ordinary TD approximation
and the exact solution, though the SU(2) is a too simple toy model to compare with them.
Furthermore, it is very interesing to investigate whether the weak killer condition may hold
with good accuracy or not for the SU(2) and SU(3) LMG model Hamiltonians, respectively.

In conclusion, we have developed the first-order approximation to the projected U(n)

dyadic TD equation keeping the non-Euclidean property of transformation by the generator
coordinate. The approximate equation can be reduced to simpler forms by the Schur function
of group characters which makes possible to connect the present theory with the soliton theory
on the group manifold [17–19].
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Appendix A. Slater determinant and Plücker relation

Using the representation of g and the variable p of the coset space defined in section 2, following
Fukutome [10], we express the third equation of (2.4), m particle S-det as

U(g)|φm〉 = 〈φm|U(gζgw)|φm〉epiac
†
i ca |φm〉, (g = gζgw) (A.1)

where we have used the relations

1 +
M∑

ρ=1

∑
1�a1<···<aρ�m,

m+1�i1<···<iρ�n

A(pi1a1 · · · piρaρ
)c

†
i1
ca1 · · · c†

iρ
caρ

= epiac
†
i ca ,

〈φm|U(gζgw)|φm〉 = [ det(1 + p†p)]−
1
2 · det w,

(A.2)

and the definition

A(pi1a1 · · · piρaρ
)

d= det




pi1a1 · · · pi1aρ

...
...

piρa1 · · · piρaρ


 . (A.3)

In equation (A.2) the maximum value M is given by M = min(n − m, m) and A is an anti-
symmetrizer.

On the other hand, in the Grm (2.5) we can introduce an expression called the Plücker
coordinate, which has played important roles for an algebraic construction of soliton theory in
its early stage [20],

U(g)|φm〉 = ∑
1�α1,...,αm�n

v1,...,m
α1,...,αm

(g)c†
αm

· · · c†
α1

|0〉,

v1,...,m
α1,...,αm

(g) = det




gα1,1 · · · gα1,m

...
...

gαm,1 · · · gαm,m


 (Plücker coordinate).

(A.4)

From an elementary determinantal calculus, we prove easily that the Plücker coordinate has a
relation

m+1∑
i=1

(−1)i−1v
1,...,m
α1,...,αm−1,βi

· v
1,...,m
β1,...,βi−1,βi+1,...,βm+1

= 0 (Plücker relation), (A.5)

where the indices denote the distinct sets 1 � α1, . . . , αm−1 � n and 1 � β1, . . . , βm+1 � n.
Now we study a relation between coset coordinates appearing in (A.2) and Plücker

coordinates in (A.4). Each coordinate makes a crucial role to construct the time-dependent
HF theory [1] and the soliton theory [18] on the Grm. Using expressions for unoccupied and
occupied states in (A.2), we can rewrite (A.4) as

U(g)|φm〉 = |φm〉 +
M∑

ρ=1

∑
1�a1<···<aρ�m,

m+1�i1<···<iρ�n

v
1,...,m
1,..., a1−1, a1+1, ···, aρ−1, aρ+1, ···,m, i1,...,iρ (gζgw)

· c
†
iρ

· · · c†
i1
c†
m · · · c†

aρ+1c
†
aρ−1 · · · c†

a1+1c
†
a1−1 · · · c†

1|0〉

= |φm〉 + v
1,...,m
1,...,m(gζgw)

M∑
ρ=1

∑
1�a1<···<aρ�m,

m+1�i1<···<iρ�n

v
1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζgw)

v
1,...,m
1,...,m(gζgw)

· c
†
i1
ca1 · · · c†

iρ
caρ

|φm〉. (A.6)
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The last line of the above is recast again into the form of (A.4) after many time exchanges
between ca1 · · · caρ

and all creation operators so that all the annihilation operators are ordered
in such a way that they are to the right of all the creation operators including the ones in |φm〉.
Then we have the relation

v
1,···,m
1,...,a1−1,a1+1,···,aρ−1,aρ+1,···,m,i1,...,iρ (gζgw) = (−1)

∑ρ−1
j=0 (m−j−aρ−j)v

1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζgw), (A.7)

and the following decompositions:

v
1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζgw) = v

1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζ)v

1,...,m
1,...,m(gw),

v
1,...,m
1,...,m(gζgw) = v

1,...,m
1,...,m(gζ)v

1,...,m
1,...,m(gw), v

1,...,m
1,...,m(gζ) = det C(ζ) = [det(1 + p†p)]−

1
2 ,

(A.8)

where

v
1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζ) = det




C(ζ)1,1 · · · C(ζ)1,m

...
...

C(ζ)a1−1,1 · · · C(ζ)a1−1,m

S(ζ)i1,1 · · · S(ζ)i1,m

C(ζ)a1+1,1 · · · C(ζ)a1+1,m

...
...

C(ζ)aρ−1,1 · · · C(ζ)aρ−1,m

S(ζ)iρ ,1 · · · S(ζ)iρ ,m

C(ζ)aρ+1,1 · · · C(ζ)aρ+1,m

...
...

C(ζ)m,1 · · · C(ζ)m,m




, v
1,...,m
1,...,m(gw) = det w. (A.9)

Here matrix elements in the a1-th, . . . and aρ-th rows, C(ζ)a1,1∼m, . . . and C(ζ)aρ ,1∼m are
replaced with S(ζ)i1,1∼m, . . . and S(ζ)iρ ,1∼m to describe ρ (1 < ρ < m) times particle–hole
excitations from hole state a1 to particle state i1, . . . and those of hole state aρ to particle state
iρ, respectively.

Equating (A.2) and (A.4) with (A.6) and (A.9), respectively, we obtain the anti-
symmetrized A(· · ·) and the coset variable expressed in terms of Plücker coordinates as

A(pi1a1 · · · piρaρ
) =

v
1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζ)

v
1,...,m
1,...,m(gζ)

, pia = [S(ζ)C−1(ζ)]ia = v
1,...,a,...,m
1,...,i,...,m (gζ)

v
1,...,m
1,...,m(gζ)

, (A.10)

in the second Plücker coordinate of which, only one row matrix elements of its determinantal
form (A.9) C(ζ)a,1∼m are replaced with S(ζ)i,1∼m. Expanding the anti-symmetrized A(· · ·) in
the left-hand side of the first equation of (A.10) with respect to, for example, the first column,
we have a decomposition rule

v
1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζ)

v
1,...,m
1,...,m(gζ)

=
ρ∑

j=1

(−1)j+1pija1A(pi1a2 · · · pij−1,aj
pij+1aj+1 · · · piρaρ

)

=
ρ∑

j=1

(−1)j+1
v

1,...a1,...,m
1,...,ij ,...,m(gζ)

v
1,...,m
1,...,m(gζ)

v
1,...,a1,...,a2,...,aj ,...,aj+1,...,aρ ,...,m
1,...,a1,...,i1,...,ij−1,...,ij+1,...,iρ ,...,m(gζ)

v
1,...,m
1,...,m(gζ)

, (A.11)
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which is rewritten to another form (the second Plücker relation)

v
1,...,m
1,...,m(gζ)v

1,...,a1,...,aρ ,...,m
1,...,i1,...,iρ ,...,m (gζ) +

ρ∑
j=1

(−1)jv
1,...a1,...,m
1,...,ij ,...,m(gζ)v

1,...,a1,...,a2,...,aj ,...,aj+1,...,aρ ,...,m
1,...,a1,...,i1,...,ij−1,...,ij+1,...,iρ ,...,m(gζ) = 0,

(A.12)

in which a hole state a1 in the last Plücker coordinate make no changes (a1 → a1) since in the
second one a particle–hole excitation already occurred from the hole state a1 to the particle
state ij [19].

It is well-known that the Plücker relation (A.5) is equivalent to a bilinear identity equation

n∑
α=1

c†
αU(g)|φm〉 ⊗ cαU(g)|φm〉 =

n∑
α=1

U(g)c†
α|φm〉 ⊗ U(g)cα|φm〉 = 0, (A.13)

which have made an important role to construct many kinds of solitons on various group
manifolds by using the corresponding τ-functions [18].

Appendix B. Derivation of particle–hole operators and vacuum function

Consider a function �(g) on the U(n) group corresponding to a state vector |�〉 in the fermion
space

|�〉 =
∫

U(g)|0〉〈0|U†(g)|�〉dg =
∫

U(g)|0〉�(g)dg, (B.1)

where dg is an invariant group integration over the U(n) group. The explicit representation of
g is given by (2.8). When an infinitesimal operator 1 + δĝ and a corresponding infinitesimal
unitary transformation U(1 + δg) is operated on |�〉, using U−1(1 + δg) � U(1 − δg), it
transforms |�〉 as

U(1 − δg)|�〉 ≡ (1 − δĝ)|�〉 =
∫

U(g)|0〉〈0|U†((1 + δg)g)|�〉dg

=
∫

U(g)|0〉�((1 + δg)g)dg =
∫

U(g)|0〉(1 + δg)�(g)dg, (B.2)

where

δg ≡
[
δCw −δS†w̄

δSw δC̃w̄

]
,

δĝ = (δCw)abeab + (δC̃w̄)ijeij + (δSw)iae
ia + (δS†w̄)aieai,

δg = (δCw)abeab + (δC̃w̄)ijeij + (δSw)iae
ia + (δS†w̄)aieai.

(B.3)

Equation (B.2) shows that the operation of 1 − δĝ on the |�〉 in the fermion space corresponds
to the left multiplication by 1 + δg for the variable of g of the function �(g). For a small
parameter ε, we obtain a representaion on �(g) as

ρ(eεδg)�(g) = �(e−εδgg) = �(g − εδgg) = �(g + dg), (B.4)

which leads us to a relation dg = −εδgg. From this, we express it explicitly as[
dgab dgai

dgia dgij

]
= −ε

[{(δCw) · (Cw) − (δS†w̄) · (Sw)}ab −{(δCw) · (S†w̄) + (δS†w̄) · (C̃w̄)}ai

{(δSw) · (Cw) + (δC̃w̄) · (Sw)}ia {(δC̃w̄) · (C̃w̄) − (δSw) · (S†w̄)}ij

]
,

(B.5)
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dgab = ε
∂gab

∂gcd

∂gcd

∂ε
= ε

∂gab

∂ε
= −ε{(δCw) · (Cw) − (δS†w̄) · (Sw)}ab,

dgia = ε
∂gia

∂gjb

∂gjb

∂ε
= ε

∂gia

∂ε
= −ε{(δSw) · (Cw) + (δC̃w̄) · (Sw)}ia,

dgai = ε
∂gai

∂gbj

∂gbj

∂ε
= ε

∂gai

∂ε
= ε{(δCw) · (S†w̄) + (δS†w̄) · (C̃w̄)}ai,

dgij = ε
∂gij

∂gkl

∂gkl

∂ε
= ε

∂gij

∂ε
= −ε{(δC̃w̄) · (C̃w̄) − (δSw) · (S†w̄)}ij.

(B.6)

A differential representaion of ρ(δg), dρ(δg), is given as

dρ(δg)�(g) =
[
∂gab

∂ε

∂

∂gab

+ ∂gij

∂ε

∂

∂gij

+ ∂gia

∂ε

∂

∂gia

+ ∂gai

∂ε

∂

∂gai

]
�(g). (B.7)

Substituting (B.6) into (B.7), we can get explicit forms of the differential representaion

dρ(δg)�(g) = [(δCw)abeab + (δC̃w̄)ijeij + (δSw)iae
ia + (δS†w̄)aieai]�(g) = δg�(g), (B.8)

where each operator in δg is expressed in a differential form as

eab = −(Cw)bc

∂

∂gac

+ (S†w̄)bi

∂

∂gai

, eij = −(C̃w̄)jk
∂

∂gik

− (Sw)ja
∂

∂gia

,

eia = −(Cw)ab

∂

∂gib

+ (S†w̄)aj
∂

∂gij

, eai = (C̃w̄)ij
∂

∂gaj

+ (Sw)ib
∂

∂gab

.

(B.9)

Then, partial derivative formulae for group variables can be derived in the following forms:

∂

∂gac

= ∂pie

∂Cad

(w−1)cd
∂

∂pie

+ ∂τ

∂(Cw)ac

∂

∂τ

= −pia((Cw)−1)ce
∂

∂pie

− i

2
[(Cw)−1{1 + (1 + p†p)−1}]ca

∂

∂τ
,

∂

∂gik

= ∂p∗
ga

∂C̃∗
li

(w̄−1)kl
∂

∂p∗
ga

+ ∂τ

∂(C̃w̄)ik

∂

∂τ

= −p∗
ia((C̃w̄)

−1
)kg

∂

∂p∗
ga

+ i

2
[(C̃w̄)−1p(1 + p†p)−1p†]ki

∂

∂τ
,

∂

∂gib

= ∂pjd

∂Sic

(w−1)bc

∂

∂pjd

+ ∂τ

∂(Sw)ib

∂

∂τ

= ((Cw)−1)bd

∂

∂pid

− i

2
[(Cw)−1(1 + p†p)−1p†]bi

∂

∂τ
,

∂

∂gai

= ∂p∗
kb

∂(−S†)aj
(w̄−1)ij

∂

∂p∗
kb

+ ∂τ

∂(−S†w̄)ai

∂

∂τ
,

= −((C̃w̄)
−1

)ik
∂

∂p∗
ka

+ i

2
[(C̃w̄)−1p(1 + p†p)−1]ia

∂

∂τ
,

(B.10)

where we have introduced a variable τ = −i ln det w which is, by means of p = SC−1 = C−1S,
cast to

τ = −i ln

(
det(Cw)

det C

)
= −i ln det(Cw) − i

2
ln[det(1 + p†p)]

= −i ln det(Cw) − i

2
ln[det{1 + (S†w̄)(C̃w̄)−1(Sw)(Cw)−1}], (B.11)
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which includes the group variables Cw, C̃w̄, Sw and S†w̄ only in the first order and their
inverse (Cw)−1 and (C̃w̄)−1. This expression makes a crucial role to get the correct form
of τ-differential. Substituting (B.10) into (B.9), we can get the explicit expressions for the
differential operators for particle–hole pairs in the following forms:

eia d= −
(

p∗
jap

∗
ib

∂

∂p∗
jb

+ ∂

∂pia

− i

2
p∗

ia

∂

∂τ

)
, eai

d= −
(

pjapib

∂

∂pjb

+ ∂

∂p∗
ia

+ i

2
pia

∂

∂τ

)
,

eab
d= pia

∂

∂pib

− p∗
ib

∂

∂p∗
ia

+ iδab

∂

∂τ
, eij

d= p∗
ia

∂

∂p∗
ja

− pja

∂

∂pia

, (B.12)

by which we can prove that the Lie commutation relation (2.2) is also satisfied. Then from
equations (B.2) and (B.3), it can easily be shown that the infinitesimal left transformation of
the variable g is equivalent to operate the differential operators (B.12) on �(g).

To construct a free particle–hole vacuum function, using the second equation of (A.2),
we put

�m,m(p, p∗, τ) = 〈φm|U(g)|φm〉 = [ det(1 + p†p)]−
1
2 · det w. (B.13)

Let us introduce a function �m,m(p, p∗, τ) defined as

�m,m(p, p∗, τ) = �∗
m,m(p, p∗, τ) = [ det(1 + p†p)]−

1
2 e−iτ . (B.14)

By using the famous formula for differential of a determinant, we can easily calculate
differentials of det(1 + p†p) as

∂

∂pjb

[det(1 + p†p)]−
1
2 = − 1

2p∗
jc[(1 + p†p)−1]T

cb[det(1 + p†p)]−
1
2 ,

∂

∂p∗
ia

[det(1 + p†p)]−
1
2 = − 1

2pid[(1 + p†p)−1]da[det(1 + p†p)]−
1
2 .

(B.15)

Then, from equations (B.14) and (B.15) we get

eia�m,m(p, p∗, τ) = { 1
2p∗

ibp
∗
ja · pjc[(1 + p†p)−1]cb + 1

2 [p∗(1 + p†p)T−1]ia + 1
2p∗

ia}
× �m,m(p, p∗, τ)

= { 1
2 [p∗(1 + pTp∗)−1(1 + pTp∗)]ia + 1

2p∗
ia}�m,m(p, p∗, τ)

= p∗
ia�m,m(p, p∗, τ), (B.16)

eai�m,m(p, p∗, τ) = { 1
2pibpja · p∗

jc[(1 + p†p)−1]T
cb

+ 1
2pid[(1 + p†p)−1]da − 1

2pia}�m,m(p, p∗, τ)

= { 1
2 [p(1 + p†p)−1(1 + p†p)]ia − 1

2pia}�m,m(p, p∗, τ) = 0, (B.17)

eab�m,m(p, p∗, τ) = δab�m,m(p, p∗, τ), (B.18)

eij�m,m(p, p∗, τ) = 0, (B.19)

and finally we obtain a relation

eiap∗
jb = −p∗

ibp
∗
ja + p∗

jbe
ia. (B.20)

Thus, we have proved that on the function �m,m(p, p∗, τ) the particle–hole differential operators
(B.12) satisfy the relations (B.21) and the commutation relation [eia, p∗

jb] = −p∗
ibp

∗
ja.

Therefore, it turns out that the function �m,m(p, p∗, τ) should be regarded as a free particle–hole
vacuum in the physical fermion space.
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From the above calculations, these differential operators are also proved to satisfy the
relations

eia�m,m(p, p∗, τ) = p∗
iaφm,m(p, p∗, τ), eai�m,m(p, p∗, τ) = 0,

eab�m,m(p, p∗, τ) = δab�m,m(p, p∗, τ), eij�m,m(p, p∗, τ) = 0,
(B.21)

for the free particle–hole vacuum function �m,m(p, p∗, τ). Furthermore, we can introduce
higher-order differential operators obeying the relation

D
1,...,a1,···,aµ,···,m
1,...,i1,···,iµ,···,m (p, ∂p, ∂p∗ , ∂τ)

d= ei1a1 · · · eiµaµ ,

D
1,...,a1,···,aµ,···,m
1,...,i1,···,iµ,···,m (p, ∂p, ∂p∗ , ∂τ)�m,m(p, p∗, τ) = A(p∗

i1a1
· · · p∗

iµaµ
)�m,m(p, p∗, τ),

(B.22)

which show that by operating the differential operator D on the vacuum function � we obtain
the Plücker coordinate A. The Plücker relation (A.12) becomes a finite set of partial differential
equations satisfying

�m,m(p, p∗, τ)D
1,...,a1,···,aρ ,···,m
1,...,i1,···,iρ ,···,m φm,m(p, p∗, τ) +

ρ∑
j=1

(−1)jD
1,...,a1,...,m
1,...,i1,...,m �m,m(p, p∗, τ)

×D
1,...,a1,...,a2,...,aj ,...,aj+1,...,aρ ,...,m
1,...,a1,...,i1,...,ij−1,...,ij+1,...,iρ ,...,m�m,m(p, p∗, τ) = 0,

(v
1,...,a1,···,aµ,···,m
1,...,i1,···,iµ,···,m (gζgw))∗=(v

1,...,a1,···,aµ,···,m
1,...,i1,···,iµ,···,m (gζ) det w)∗=D

1,...,a1,···,aµ,···,m
1,...,i1,···,iµ,···,m �m,m(p, p∗, τ).

(B.23)

Thus, in both the SCF theory and the soliton theory on a group, we can find the common
features that the Grassmannian is just identical with the solution space of the bilinear differential
equation. The solution space of each differential equation becomes an integral surface [19, 21,
22]. The free particle–hole vacuum function �m,m(p, p∗, τ) can be also expressed in terms of
the Schur polynomials given in the next appendix.

Appendix C. Schur polynomials

Let us introduce Schur polynomials Sl(χ) belonging to C(χ1, χ2, . . .) through a generating
function

exp

( ∞∑
l=1

χlt
l

)
=

∞∑
l=0

Sl(χ)tl. (C.1)

For an element of an N -dimensional linear group GL(N ), the Schur polynomial is related to
a symmetric function hl,

∑
l�0 hlt

l = ∏N
i=1(1 − εit)

−1. Then, the Schur polynomial Sl(χ) is
written as

Sl(χ) = hl(ε1, ε2, . . . , εN ), χl = 1

l
(εl

1 + εl
2 + · · · + εl

N ). (C.2)

The Schur polynomial Sλ(χ) is given as

Sλ(χ) = Sλ1,λ2,λ3,...,λl
(χ) =

∣∣∣∣∣∣∣∣∣∣

Sλ1 Sλ1+1 Sλ1+2 · · · Sλ1+l−1

Sλ2−1 Sλ2 Sλ2+1 · · · Sλ2+l−2

Sλ3−2 Sλ3−1 Sλ3 · · · Sλ3+l−3

· · · · · · · · · · · · · · ·
Sλl+1−l Sλl+2−l Sλl+3−l · · · Sλl

∣∣∣∣∣∣∣∣∣∣
= det{(Sλi+j−i(χ))i,j} ,

(C.3)

where the λ denotes a partition λ = {λ1 � λ2 � · · · � λl > 0} [17].
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For the special partition λ = 1m ≡ {λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 1, . . . , λm = 1}, i.e.
the completely anti-symmetric Young diagram,

S1m(χ) =

∣∣∣∣∣∣∣∣∣∣

S1(χ) S2(χ) S3(χ) S4(χ) · · · Sm(χ)

1 S1(χ) S2(χ) S3(χ) · · · Sm−1(χ)

0 1 S1 S2(χ) · · · Sm−2(χ)

· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · S1(χ)

∣∣∣∣∣∣∣∣∣∣
= (−1)mSm(−χ), (C.4)

where we have used the explicit forms of the Schur polynomials (D.6) given in the next
appendix.

Appendix D. Other expressions for D(p′T p∗)

Inserting the completeness relation, we can express the overlap integral (2.17) in the form

S(g, g′)=〈φm|U†(g)
∑

1�a<b<···�m;
m+1�i<j<···�n

|Sm
ij···ab···〉〈Sm

ij···ab···|U(g′)|φm〉= [〈φm|U(g)|φm〉epiac
†
i ca |φm〉]†

×




M∑
ρ=0

∑
1�a1<···<aρ�m,

m+1�i1<···<iρ�n

|Sm
1,...,m without {a1,...,aρ};i1,...,iρ〉〈Sm

1,...,m without {a1,...,aρ};i1,...,iρ |




× [〈φm|U(g′)|φm〉ep′
iac

†
i ca |φm〉] = [epiac

†
i ca |φm]†

×




M∑
ρ=0

∑
1�a1<···<aρ�m,

m+1�i1<···<iρ�n

|Sm
1,...,m without {a1,···,aρ};i1,...,iρ〉〈Sm

1,...,m without {a1,...,aρ};i1,...,iρ |




× [ep′
iac

†
i ca |φm〉]�00(g)�∗

00(g
′)

=
M∑

ρ=0

∑
1�a1<···<aρ�m,

m+1�i1<···<iρ�n

[〈Sm
1,...,m without {a1,...,aρ};i1,...,iρ |epiac

†
i ca |φm〉]∗

× [〈Sm
1,...,m without {a1,···,aρ};i1,...,iρ |ep′

iac
†
i ca |φm〉]�00(g)�∗

00(g
′), (D.1)

where |Sm
ij···ab···〉 = c

†
i cac

†
j cb · · · |Sm〉 and |Sm〉 = |φm〉. In the above equation, we have used

the first relation of (A.2). Let A = 1 for ρ = 0. Then, we have

S(g, g′) =
M∑

ρ=0

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

A(p∗
i1a1

· · · p∗
iρaρ

)A(p′
i1a1

· · · p′
iρaρ

)�00(g)�∗
00(g

′)

= S(p∗, p′)�00(g)�∗
00(g

′), (D.2)

from which we can obtain one of the other expressions for D(p′Tp∗) (= S(p∗, p′)) as

D(p′Tp∗) =
M∑

ρ=0

∑
1�a1<···<aρ�m;
m+1�i1<···<iρ�n

A(p′
i1a1

· · · p′
iρaρ

)A(p∗
i1a1

· · · p∗
iρaρ

). (D.3)

Of course, the above equation is exactly identical with (2.23).
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Using the famous formula and the Schur polynomials Sl(χ)(χ = (χ1, χ2, χ3, . . .),
S0(χ) = 1) (C.1)

det(1 + X) = exp{Tr ln(1 + X)} = exp

{ ∞∑
l=1

(−1)l−1 1

l
Tr(Xl)

}
, (D.4)

and denoting z = p†p′, we have another expression for D(p′Tp∗) as

D(p′Tp∗) = det(1 + p†p′) =
∞∑
l=0

Sl(χ),


χl ≡ (−1)l−1 1

l
Tr(zl),

χl = Sl(χ) = 0, (l � M + 1),
(D.5)

where the first few Schur polynomials Sl(χ) read

S1(χ) = χ1, S2(χ) = χ2 + 1
2χ2

1, S3(χ) = χ3 + χ1χ2 + 1
6χ3

1,

S4(χ) = χ4 + χ1χ3 + 1
2χ2

2 + 1
2χ2

1χ2 + 1
24χ4

1, . . . .
(D.6)

With the aid of the formula

[det(1 + X)]−
1
2 = exp{Tr ln(1 + X)−

1
2 } = exp

{ ∞∑
l=1

(−1)l
1

2l
Tr(Xl)

}
, (D.7)

to our great surprise, the free particle–hole vacuum function �m,m(p, p∗, τ) (B.14) can be also
expressed in terms of the Schur polynomials Sl(ξ) as

�m,m(p, p∗, τ) =
∞∑
l=0

Sl(ξ) · e−iτ ,


ξl ≡ (−1)l

1

2l
Tr([p†p]l),

ξl = Sl(ξ) = 0. (l � M + 1).

(D.8)

Rowe et al showed that the NP SO(2n) wave function satisfies recursion relations and were
able to express it with the aid of the relations in a form of determinant which is well known as
the completely anti-symmetric Schur function in the theory of group characters [13, 23]. In
the present U(n) case, equation (D.5) is also given by a determinant form

ϕl(z) = 1

l!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1 1 0 0 · · · 0
2χ2 χ1 2 0 · · · 0
3χ3 2χ2 χ1 3 · · · 0
...

...
...

... · · · ...

...
...

... · · · · · · l − 1
lχl (l − 1)χl−1 (l − 2)χn−2 (l − 3)χl−3 · · · χ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)lSl(−χ), (D.9)

which is exactly the same form as that given in [7]. The Schur function ϕl(z) satisfies the
recursion relation and the differential formula

ϕl(z) = 1

l

{
χ1 −

l−1∑
l′=1

(l′ + 1)χl′+1
∂

∂χl′

}
ϕl−1(z),

∂

∂χl′
ϕl(z) = (−1)l

′+1ϕl−l′(z). (D.10)

By using the second equation of (D.10), we can rewrite the above recursion relation as

ϕl(z) = 1

l

l∑
l′=1

(−1)l
′+1l′χl′ϕl−l′(z) (ϕ0 = 1). (D.11)
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Appendix E. Differential formulae for D(ep∗) with respect to eai

A differential formula for D(ep∗) with respect to eai is easily given as

∂D(eq∗)
∂eai

= ∂ det(1 + eq∗)
∂(1 + eq∗)bc

∂(1 + eq∗)bc

∂eai

= K∗
iaD(eq∗), (K∗ ≡ q∗(1 + eq∗)−1), (E.1)

and we have used the famous differential formulas for a regular matrix A = (Aab)

∂ det A

∂Aab

= (A−1)ba det A,
∂(A−1)dc

∂Aab

= −(A−1)bc(A
−1)da. (E.2)

As for the second differential for the D(ep∗), it is easily carried out as follows:

∂2D(eq∗)
∂ebj∂eai

= ∂K∗
ia

∂ebj

D(eq∗) + K∗
jbK

∗
iaD(eq∗)

=
[
q∗

ia′
∂{(1 + eq∗)−1}a′a

∂{(1 + eq∗)}cd
∂{(1 + eq∗)}cd

∂ebj

+ K∗
jbK

∗
ia

]
D(eq∗)

= [K∗
iaK

∗
jb − K∗

ibK
∗
ja]D(eq∗)

= A(K∗
iaK

∗
jb)D(eq∗). (E.3)

Then, succesive differential calculi to higher orders lead to a general differential formula

∂ρD(eq∗)
∂ea1i1∂ea2i2 · · · ∂eaρiρ

= A(K∗
i1a1

K∗
i2a2

. . . K∗
iρaρ

)D(eq∗) (ρ = 1, . . . , min(m, n − m)). (E.4)

A similar differential formula to equation (E.4) was derived by Fukutome on the SO(2n + 1)

Lie algebra for superconducting fermion systems [5].
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